MAIN TOPICS FOR FINAL EXAM

All topics from Group Theory and Ring Theory (as covered in Topics for Exams 1 and 2), plus:

FIELD THEORY

- (1) Field extensions
 - (a) Dimension of K as F-algebra \rightarrow degree [K:F].
 - (b) If $K \supset L \supset F$ then [K : F] = [K : L][L : F].
 - (c) Algebraic vs trancendental elements.
 - (d) Characterization of algebraic elements. (finite degree)
 - (e) Minimal polynomial of an algebraic element.
 - (f) Formal differentiation (definition only).
- (2) Splitting fields
 - (a) Roots of polynomials.
 - (b) Construction of a field with a root of a polynomial -> F[x]/(f).
 - (c) The existence of splitting fields.
 - (d) Uniqueness of splitting fields up to isomorphism fixing F.
 - (e) Isomorphism $F(a) \cong F(b)$ if a, b are roots of $f \in F[x]$.
- (3) Ruler and compass constructions
 - (a) The set \mathbb{K} of constructible numbers is a field with $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$.
 - (b) $a \in \mathbb{K}$ iff there are $\lambda_1, \ldots, \lambda_n$ with $[\mathbb{Q}(\lambda_1, \ldots, \lambda_i) : \mathbb{Q}(\lambda_1, \ldots, \lambda_{i-1})] = 2$ for $i = 1, \ldots, k$.
 - (c) Corollary: if a is constructible, then it lies in an extension K/\mathbb{Q} with $[K:\mathbb{Q}] = 2^n$ for some n.
 - (d) Applications: trisecting angle, doubling cube, etc.
- (4) Galois theory
 - (a) Definition of a Galois group
 - (b) Galois correspondence between subgroup lattice and intermediate field lattice.
 - (c) Galois field extensions.
 - (i) Examples and anti-examples.
 - (d) Action of a Galois group on roots of a polynomial.
- (5) Sketch of further Galois theory
 - (a) Equivalent conditions for a Galois extension.
 - (b) If K/F is Galois, then the correspondence between subgroup lattice and intermediate field lattice is a bijection.